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NATTIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1949

FLUTTER OF FLAT RECTANGUIAR ORTHOTROPIC PANELS WITH
BIAXIAL LOADING AND ARBITRARY FLOW DIRECTION*

By Herman L. Bohon

SUMMARY

A theoretical analysis is presented on the flutter of flat simply supported
orthotropic panels at supersonic speeds. Modified piston theory is employed for
the lateral loading. Flutter boundaries obtained by the Galerkin procedure are
presented for square panels of various stiffness ratios with arbitrary orienta-
tion of maximum panel flexural stiffness with the airstream and various conditions
of biaxial compressive loading.

The boundaries show that orthotropic panels are highly sensitive to small
changes in flow angularity away from the condition of orientation of maximum
stiffness in the direction of the stream. Further, a small change from this
orientation can cause a change in the critical flutter mode, and there can be
stress ratios for which very large thicknesses are required for prevention of
flutter once the panel undergoes the mode change. The results also indicate that
a choice of proper panel orientation should be based on an analysis which includes
representative conditions on flow angularity and midplane loading. In addition,

a method for determining the intersection of the linear dynamic and static stabil-
ity boundaries is presented.

INTRODUCTION

The prevention of flutter of exposed skin surfaces of supersonic and reentry-
type vehicles has become a critical design problem, as is evident from flutter
experienced by recent vehicles operating at supersonic speeds. (See ref. 1.)
Although numerous theoretical studies have been conducted (see ref. 2), the large
number of parameters influencing a flutter boundary discourage comprehensive
analytical studies. Furthermore, the experimentalists have extreme difficulty in
isolating the various parameters in experimental investigations and, consequently,
correlation between experimental and theoretical results is generally
unsatisfactory.

*The information presented herein was offered as a thesis in partial ful-
fillment of the requirements for the degree of Master of Science in Engineering
Mechanics, Virginia Polytechnic Institute, Blacksburg, Virginia, March 1963.



Some of the parameters known to have a large influence on the flutter bound-
ary are panel geometry, edge restraints, and midplane compressive loads. In addi-
tion, recent theoretical studies (see refs. 3 and 4) indicated large effects of
flow angularity (in the plane of the panel) on flutter of rectangular panels, free
of midplane loads (ref. 3), and with midplane compression and shear (ref. 4). The
theoretical analyses, however, have considered only flat or slightly curved iso-
tropic panels and, with the exception of some treatment in reference 5, no theo-
retical investigations have been conducted on flutter characteristics of ortho-
tropic panels.

The use of orthotropic panels (generally corrugation-stiffened panels) is
widespread in design of exposed-skin construction of supersonic and reentry-type
vehicles. In general, such panels have greater load-carrying ability per unit
weight than the conventional isotropic panel and thus provide a weight saving.
In addition, the corrugation-stiffened panel is adaptable to the severe tempera-
ture environment encountered at high supersonic speeds where alleviation of some
thermal stresses i1s essential.

Theoretical and experimental data depicting the flutter behavior of ortho-
tropic panels are practically nonexistent and the flutter characteristics of such
panels must, of necessity, be determined by wind-tunnel investigations. (These
investigations are sometimes rather extensive.) Thus, it is essential to evalu-
ate the influence of parameters affecting the flutter characteristics of ortho-

tropic panels.

The investigation reported herein will show the effects of flow angularity
and biaxial compression on the flutter behavior of unbuckled orthotropic panels.
A four-mode Galerkin-type approximation to the soclution of the governing equation
for lateral deflections is performed for simply supported rectangular orthotropic
panels and linearized aerodynamics from modified piston theory is employed for
the lateral loading. The problem of proper orientation of the panel with the
airstream will be discussed.

SYMBOLS
A,B parameters defined by equations (10)
— Nya? 2D
An stress parameter, X . 2n2(é> X
nEDx b Dx
a panel length in x~-direction

,Eﬁ parameters defined by equations (18)
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BRr' parameter defined by equation (15b)

b panel width in y-direction

by,bp,b3,by coefficients defined by equations (9)
Bl,gg,ﬁj,ﬁu coefficients defined by equations (19c¢)
Coun Fourier series coefficients

c speed of sound

Dy maximum flexural stiffness of panel

Dy minimum flexural stiffness of panel

ny twisting stiffness of panel

d,e,k,p coefficients defined by equations (19b)

c
gq, aerodynamic damping coefficient, 5%;—
T
Im imaginary part
i= -1
J,1,myn,r,s integers
Kx,Ky dimensionless measures of inplane buckling load in x- and y-directions,

respectively

generalized force coefficient defined by equations (6)
L, rs

M Mach number

Nx inplane loading in x-direction, positive in compression
Ny inplane loading in y-direction, positive in compression
Nx,cr’Ny,cr critical inplane loads

§ﬁn,rs generalized force coefficient defined by equations (6)

Q,R,S,Rs,50 coefficients defined by equations (13) and (19b)
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dynamic pressure of air-

2
pv
stream, -
real part
time

flow velocity
lateral deflection of panel

Cartesian coordinates of
panel (see fig. 1)

fixed coordinates based on
stream direction (see
fig. 1)

frequency exponential
coefficient

V4 mass per unit area of panel

nondimensional coordinate, y/b
A flow angle in plane of panel, deg
A dynamic-pressure parameter, 2;35

X

Aer critical value of dynamic-pressure parameter
Ap transtability speed
£ nondimensional coordinate, x/a
o) density of air
¥ real part of complex frequency exponential coefficient
w circular frequency
wp reference frequency (see egs. (7))
Subscripts:
J,1l,myn,r,s integers
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ANATLYSIS

An analysis of the governing equation for flutter of orthotropic rectangu-
lar panels with one surface exposed to supersonic flow is presented. The panel
geometry and coordinate system are shown in figure 1. The panel has a length a
in the x-direction (direction of maximum stiffness) and width b in the y-
direction (direction of minimum stiffness). The flow direction in the plane of
the panel is at an arbitrary angle A measured with respect to the direction of
maximum panel stiffness. The effects of constant inplane loads are included and
small deflections are assumed.

For small-deflection thin-plate theory the governing equation for vibrations
of orthotropic panels -subjected to supersonic flow over one surface is

i b 4 2
d'w o'W W W oW oW ow  2g ow
Dy &¥ +op,, 2¥ _ 4 p, ¥ = (1)
* axct = 8x28y2 w *

where Dy and Dy are the flexural stiffnesses in the x- and y-directions,
respectively; ny is the twisting stiffness; Ny and Ny are constant inplane

loads, positive in compression; and 7y 1is the mass per unit area of the panel.
The last two terms on the right-hand side of equation (1) represent the linearized
lateral air forces given by modified piston theory. That is, the Mach number M
in the last term on the right-hand side of equation (1) is replaced by p, where

B = VME - 1. In these terms, p 1is the density of air, c¢ 1s the speed of
sound, and q 1is the dynamic pressure.

After transformation of the loading term to the panel coordinates and non-
dimensionalization, equation (1) becomes:

2 L
b N_a 62w N.a aEW

R + 2<§l_>2 Dy ot (i> by ot M z
ek b/ Dx 3£2m2 b %(%u Dx 362 Dpyp° an°
b2 4 3
+ Y2 3w 4 pca Ow + Egg_ (cos A)@K + E(sin A)@E =0 (2)
Dx 3.2 Dx ot PBDx o b 0

o'f<

where E = g and 7 The boundary conditions for a simply supported panel

are.:



w(0,n,t) = w(l,n,t) = w(¢,0,t) = w(t,1,t) =0

2
%(O:Tbt) = %(lﬂbt) = a—"g‘(g,’o:t) = é%(gyl)t) =0
ot Ot BT] 31]

A solution to equation (2) for these boundary conditions will be obtained by the
Galerkin procedure as follows. Let the lateral deflection of the panel be repre-
sented by:

w = Re }Z }Z(Cmn sin mxt sin nnn)e“t (W)
m n

where a, in general, is complex. This equation satisfies the boundary conditions
term by term and the coefficients Cp, are arbitrary. Substituting equation (&)

into equation (2), multiplying by sin rat sin sxm, and integrating over the panel
ylelds the following set of equatlons for the coefficients Cmn:

J 1
(mh - mzxn - -B-n)Cmn + L}_’_ z 7\( cos A)fmn, rscrn
T r=l s=1
J 1
1 a, . =
+ = Z Z A g(sm A)Pmn,rscms =0 (m=1, 2, . Js (5)
i n=1 2 < .1)
r=1 s=1 » <y
where
= 7
Lon,rs = © n#s
= 0 m+reven, n = 8
= ——&EZ—— m+rodd, n=s
re - m?
_ Yy (6)
Pun,rs = O m#r
=0 n+seven m=r
Lns
= — n+sodd, m=rT
s - n° ’
J
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In equations (7) wy 1is the lowest in vacuo frequency of a simply supported
semi-infinite plate and g5 1s the aerodynamic damping coefficient. A four-mode
solution to equation (5) has been obtained with the use of two terms of the sine
series of equation (4) in both the x- and y-directions (m = 1,2; n = 1,2). For
a nontrivial solution, the determinant of the coefficients of Cpp must equal

zero; thus, for j =1 =2,

8 A 8a A
bl gﬂ—ECOSA ggn—uSinA 0
_8 8ad
3 ok cos A bo 0 3% ﬂh sin A
=0 (8)
_8a A 8 2
33 ﬂh sin A 0] b3 3 nu cos A
_8a _8 A
0 3 ﬁh sin A 3 nu cos A bh
where
by =1 -A-B )
b, =16 - UA - B
—_— - 2D 2 N 2 Dy
b_l-A-B+6<?-)—xy-- (é K, —Y (5 (9)
5 b/ Dx > b) y.Ny,cr b> Dy
- _ 2D 2 N 2
bu=l6-hA-B+24(é) X (i) &{y Y _5<§) >
b Dx b N. b DX<J



and

_ Ny 2 Dyy
K=Ky 5 - 2(%> —
X,Cr x
(10)
§=<5>2K Yy _(a)”_y_gg_____ag
b/ | Y Ny er b/ Dx & Op g2

In equations (9) and (10), Ky and Ky are dimensionless measures of the inplane
buckling loads Nx,cr and Ny,cr: respectively, defined by the following
expressions:

~
K. = Ny, cra@
X = T PDg
(11)
2
NY} cr®
Ky = ———
ﬂng./

Expansion of the determinant (eq. (8)) results in the following equation

in A:
L )
Q-)\_ +R.L_ +8 =0 (12)
ot o+
where
N
g\t 2 °
Q= <—> E:OSQA - <§> sineq
3 b
R:(bb + byb <—8—cosA>2+(bb +bb)<§§sinA>2 (13)
1°2 T P3P\ 3 1°3 2°HI\3 b

No attempt has been made to reduce the expressions of equations (13) and the nota-
tion was adopted purely for convenience. It should be noted that for a speci-_
fied panel, a/b, Dx, Dy, and Dxy are constants, and, by equations (10), A
is seen to be a measure of the inplane load in the x-direction. Further, B is
a function of the frequency coefficient o and the inplane load in the
y-direction.

In the absence of damping, equation (12) can be solved by assuming simple
harmonic motion; that is, let o = iw, where o 1is the circular frequency. Then
the critical value of A for flutter occurs when two roots « of the freguency
parameter B become equal or coalesce. (See refs. 6 and 7.) For values of A

8



to and including A,p, all roots w of the frequency parameter are real. For
A > Aep, the pair of roots of w that coalesce become complex conjugates and,
thus, the panel has at least one unstable mode of oscillation.

A method for the solution of equation (12) when aerodynamic damping is
included is presented in references 6 and 8. This method will be outlined in the
following discussion for the purpose of determining the flutter criterion and to
develop equations from which numerical results for orthotropic panels at flow
angle A will be obtailned.

_ Let the frequency coefficient o and, consequently, the frequency parameter
B be complex; that is, let

a =V + iw
- = - (14)
B = Bg + 1Bg
where w 1s the circular frequency. Then, solving for o from the last of
equations (10) ylelds
2
g g W — —
. a T a®r .
01=W'+1(-D=- 5 + ( > ) "wr2(BR'+lBI> (153)
where
— — 2 N 2D
B.=B_§>K y _(_a_)_}i 15b
R R (b [:y Ny,cr b/ Dx (15%)

Equation (15a) may be examined to see what condition on gz is required to make
¥ vanish. For specified values of g5 the panel motion is stable if ¢ 1is

negative and unstable if ¢ 1is positive. (See eq. (4).) Therefore, for flutter
(v > 0) equation (15a) gives the following condition on gy (refs. (6) and (8)):

By 2 (16)

When the conditions for the panel on the threshold of 1lnstability (v = 0)
are considered, equation (16) requires that

Br = 8a°BR (17)

Substituting o = iw_ into the last of equations (10) gives the following expres-
sions for Bg and Bj:



e (e - (2 (2

BI‘

(18)

}
1
[0.0]
o
EIS

Equations (14) and the condition on g, (eq. (17)) permit rapid and direct solu-

tion of equatlon (12). Substituting the last of equations (1k4) into equation (12)
results in the following real and imaginary equations which must be satisfied
identically for the determinant of equation (8) to be zero:

\
4 2 2 2
. ofA 8\ 5 2|.0e2 2“ A -k -2
Re: Q(,t_h) +{?O-2(g) Bt [cosA+(%> sin“A (;E) + 8, +By - kB =0

- (2\_.)2 B -

i a y
(19a)
where
- - - 2 - - - 2
R, = (blbg + b3bu> (— cos A) + (ble + b2b1+> (% = sin A)W
S0 = ByB,b55,
p = (-l + 52>5551+ + 5152(‘53 + Bu)
) (19v)
a = (8Y (5, + 5, +5s + 5y )|cos?r + (2 sin2
_(3) (bl o 3+ 1&) cosA+<€) sin“A
k=£1(52+53+54)+52(55+5u) + Bsby,
e=51+ 52+ 53+ El;
J
and
- - = 3
by =1 - A - By
52=l6-)+K—§R
- - = 2D 2 N 2 Dy
bz =1 - A - B + 6/2Y X _ 3(& v _ sfay Y (19c)
3 R (b) DX B(b) E(yNy,cr 5<b) DX P
- _ - 2D N D
b4=l6-hA—BR+21+(E)—g-5§2K Y _oaf X
b/ Dx o) Y Ny,er b DXJ
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The dynamic-pressure parameter A can be eliminated between the real and imag-
inary parts of equations (19a). This will result in an equation in A, Bg, and

- —_ 2
Br or an equation in A and <£l> . Then for a specified stress condition and

r

T
the last of equations (19a) is then used to determine the critical value of A.

— 2
for specified values of gy, the value of Bgi or <£i) for flutter is obtained;

Representative values of gy were used in calculations presented in refer-

ence 6 for stressed, semi-infinite isotropic panels and in reference 8 for square,
simply supported isotropic panels; these results showed negligible effect on the
flutter boundaries. It is assumed that similar effects are obtained for simply
supported orthotropic panels also. It should be noted, however, that aerodynamic
damping may not be negligible for clamped panels and for long narrow panels. In
this investigation numerical results will be obtained from equations (19a) only
for the case in which g, approaches zero. Equation (17) shows that when Ea

is vanishingly small flutter occurs for By ~ O. Thus, equations (19a) reduce to

L 2
Re: Q(Ji> + Ro<%i> + 85 =0 (20)
s e
and
2
. (AY 22
Im: <ﬂh> 3 (21)

It should be remembered that neglect of g, 1s the same as omitting the

first-order time-derivative term of equation (1). Then, the linearized air
forces in equation (1) reduce to the Ackeret value and (see, for example, ref. 7)
a variety of combinations of A, A, and Br correspond to simple harmenic

motion. These conditions are given by solution of equation (20) alone. However,
simultaneous_solution of equations (20) and (21) specifies only those values of
A, A, and By for which the circular frequency ® of harmonic vibration is on

the verge of becoming complex; hence, the panel is on the verge of becoming
dynamically unstable. Eliminating A from these equations gives the following
equation in terms of Br and A only:

Qp2 - Ropd + Sgd° = 0 (22)

Thus, for a given value of A and flow angle A, equation (22) is solved directly
for the value of Br for which flutter will occur. Then, substituting this value

of Eﬁ into equation (21) gives the value of A for flutter.

11



Reduction of Equations at Flow Angles of 0° and 90°

At the extreme flow angles of 0° and 90° the solution to equation (22) can
be simplified further. Substitution of equations (18) into equation (22) results,
after considerably rearranging, in the following:

cos*A(By + Bp)(B3 + B,) (B162 - 555@2 + (%fsinlm(sl + B5)(5p + 5,)(5,55 - b2bu>2

2 N S R
+ 2(%) cos2A sinA %(bl + B, + Bs + bu> [blbu(bgg ¥ b52>(bl + bu>

r 55,2 + 5,9 + sﬁ ; [(51 + Bo)Bsby + 1555 + BAH o (23)

Thus, for flow angles of 0° or 90°, only the parenthetical quantities of the first
and second terms, respectively, are retained. It is immediately apparent that in
either case the equation has two distinct roots and one double-valued root. By
definition, each root represents the conditions on the threshold of instability.
However, for the double-valued root the physical significance is not obvious but
will be discussed in a later section. For flow angles of 0° or 900, equating the
appropriate parenthetical terms of equation (23) to zero and substituting into
equation (21) for p and d greatly reduce the labor of calculating the cor-
responding flutter values of A. For A = 0° the following equations result:

Bl + 62 =0

(2k)
M =2‘gl,
& 8
55 + ELI- = O

(25)
-4
8l

(26)

and

i2



Thus, for a given value of K, all flutter values of Eﬁ are obtained from the

first of equations (24) to (26); and the lowest corresponding flutter value of A
obtained from the last of equations (24) to (26) is termed Agp-

Equations similar to equations (24) to (26) are obtained for a flow angle of
90°. When the same procedure as before is followed, the parenthetical guantities
of the second term from equation (23) result in the following equations for eval-
uvating Bgp and A corresponding to flutter:

and

_ _ N

bl + b5 =0

N (27)
1 3=

— =Zb

b 8’ llJ

N

52 +6)+ =0

\ (28)
2 _ 3=

—= = =Z|b

» 3l )

b1b5 - bgbu =0

N (29)

5.3 -B5155

A8

It is worth noting here the modes that enter_into the equations for A. For
A= OO, equations (24) show that the parameters by and by, are sufficient to

determine A;; these parameters are seen to be functions of modes associated with

the coefficients €17 and Cop
are independent of modes with n = 2.

only (see eq. (8)) and, thus, modes with n = 1
The equation for A} (eags. (24)) reduces

to equation (16) of reference T for isotropic panels where the modes associated
with the coefficients C3) and Cpy were used. Likewise, from equations (25)

Ap is seen to be a function only of the modes associated with the coefficients
C1p and Cpp; however, equations (26) are related by all four modes. Parallel
conditions exist for A = 90°, as seen from equations (27) to (29).

Critical Buckling Loads

The foregoing equations for flutter of stressed panels are valid only to the
point of buckling; hence, it will be useful to consider the buckling characteris-

tics of orthotropic panels.

The buckling characteristics are functions of the

13



length-width ratio a/b and the stiffness ratios Dy/Dx and ny/Dx. The range

of stiffness ratios for this investigation will be limited to those appropriate

to corrugation-stiffened panels (corrugated sheet with a single cover sheet).

The lower limits of this range have been taken from reference 9 in which several

different geometrical shapes of corrugations were considered. The minimum values
D D

found for the stiffness ratios were D—XX = 0.15 and ﬁl = 0.0002. Arbitrary
X X

upper limits on the stiffness ratios which will be used in subsequent calculations

D D
are —L = 0.50 and L = 0.02.
Dx DX

The equation for the critical buckling loads at zero airspeed, in terms of
length-width ratio and stiffness ratios, is obtained directly from equation (5)
by setting A =o =0 and is

2 2 2 2 D
mb 2 _ 1Dy | Wb y/a\* Dy o 2 Dxy
(?;) Ny,cr + 0Ny cr = " E%(E) +n (E) B + 2m“n by (30)

Buckling coefficients for several buckling modes are plotted in figure 2 for a

D Dy
square panel (a = b) with stiffness ratios 5§Z = 0.15 and o = 0.0002. 1In the
ps p'e

figure the coordinates are the dimensionless coefficients Ky and Ky which are
related to the critical inplane loads Nx,cr and Ny,cr by equations (11). The

lines represent the variation of the buckling coefficients for various stress
ratios Ny/Nx and the numbers on the lines denote the buckling modes which cor-

respond to the m and n terms in the series expansion (eq. (4)). Calculations
were made to include the first buckling mode for all compressive stress condi-
tions; but, for clarity, some of the higher intermediate modes have been omitted.
For Nx = 0 (Kx = 0), the lowest buckling mode corresponds to the coefficient

C18; as Kx 1is increased, several values of Ky/Kx or Ny/Nx result in equal

N
choices of buckling modes. At a stress ratio ﬁz = 0.3 the buckling mode can be
X

assoclated with either Cy7 or Cjip; for stress ratios less than this value, the
buckling mode corresponds to Cjj. It is interesting to note that for Ky =0
(Ny = O), Kx = 1.3 at the point of buckling; thus, for the specified panel con-

ditions, the orthotropic panel has only slightly better load-carrying capability
than a pinned-end column with the equivalent stiffness Dx. The insert in fig-

ure 2 shows the variation of the buckling coefficients with Ky extended into

the reglon of tension and will be referred to in later discussion.

1k



RESULTS AND DISCUSSION IRE

0,/0, ©0.0002

As is seen from equations (20) e e e

and (21), flutter solutions are iy
dependent on four basic parameters: T*f¥144LLﬁZ or )
the dynamic-pressure parameker A, - - N \

b
the stress parameter A, the fre- !Ai
quency parameter Bg, and the flow R

frriyim |
angle A. TFor the unstressed panel, L‘*G—‘J : m»”wkﬂ
these parameters are, in turn, o A R
dependent on the length-width ratio ' - AN
a/b and the panel stiffness ratios; ; N
for flutter of a stressed panel, the )

stress ratio Ny/Nx and the criti-
N

must

cal stress parameter Ky

X,cr Ky >
also be specified. To explore in o \\\
detail the effects of each of the 04E |, N
variables on panel flutter would T A N ———
indeed be a lengthy process and, in \\\ T
fact, unwarranted in a four-mode S
analysis. It will be useful, how- . : > =
ever, to illustrate some of the more
important effects of the various
parameters on flutter characteris-

Kx

Figure 2.- Critical combinations of direct

lecs of orthotropic par.lels. Thu?: biaxial-load coefficients for flat simply
in the subsequent sections numeri- supported orthotropic panel for selected
cal results are presented only for 7°Dy

m,n and with no airflow. Nx,cr = Kx

a square panel (a = b) for several e
conditions of flow angularity, ) 1°Dy
stiffness ratios, and inplane loads. Ny,er = Xy 22

Effects of Flow Angularity on Flutter

The effects of flow angularity on flutter of orthotropic panels are shown
in figure 3 where values of the dynamic-pressure parameter A are plotted against
the frequency parameter Bg for values of the flow angle A of 09, 2°, and 90°.

The calculations were made for Ny = Ny =0, a=b, 5§Z = 0.15, and
X

gl = 0.0002. The results shown in figure 3 were obtained from solutions of the
X

real and imaginary parts of the flutter determinant (egs. (20) and (21)). The
loops shown by the solid curves are solutions of equation (20) and represent
the variation of_the panel frequencies with airflow. ©Note that for A = 0O the
four values of BR correspond to the four natural frequencies in a vacuum (for

vanishingly small values of damping) for the assumed modes; these modes are
indicated by the Cpn terms at the base of the loops in figure 3. The dashed

15



curves correspond to solutions of
equation (21) and, thus, the inter-
7 sections of the dashed curves with
w0t ‘ ; , ‘ the solid curves specify the values
o el “‘“   of A and By for which the real

‘gl//i ’ h . and imaginary parts of the flutter
g E determinant are identically satis-
fied. The values of A and Bp

at these intersection points are
obtained directly from equation (22).
D o ‘ Lo It is interesting to note that mini-
St Lo ‘ mization of A with respect to the
frequency parameter Bp from equa-

il

’mA 2 o . tion (20) leads directly to equa-
o IR tion (21). Therefore, solutions to
TR equations (20) and (21) always inter-
X”w‘) o N sect wherever the frequency loops
5 e ‘ NN (solid curves) in figure 3 have zero
| ; N ' slope. Thus, the contention of
/] ' | Hedgepeth (ref. 7T7) that flutter is
] ; imminent at coalescence of panel fre-
ol b 1 b quencies (under the assumption of
o zero aerodynamic damping) is further
substantiated.

\
I

>

NEE

At the extreme flow angles of
0° and 90° (figs. 3(a) and 3(c),
] ‘ respectively) the intersections of
a— ; \ the solid curves and dashed curves,
/ \ denoted by Ay, Ap, and %5’ are

e

i 9//f~‘ readily obtained from equations (2k)
A Mt . . NN to (26) for A = 0° and from equa-
Gy o , G ., tiloms (27) and (28) for A = 90°.
The lowest such value of A 1s the
critical value for flutter (denoted
Aer), provided that for values of

2[ n o2
5o <3V, Ny Ay Dy
B ‘\D) . Nv,cr‘b} o "t/

Flgure 3.- Infiuence of airtlow on panel fre- A > Aoy the corresponding values of
uency parameter Bp for flow angles of Q° =
doeney pare R nees ’ Bgr become complex (hence, a mode of
29, and 90°; assoclated Cpp are indicated
for A =0. a=b; Ny = Ny =0; instability). Note that in fig-

; y

Dy o000z ¥ - g1s ure 3(a) (A = 0°) there is a value
Dx 7 Dx of AN < Ayyp for which two values of

Eﬁ are equal. The flutter solution

at this intersection is given by the double-valued roots noted previously (see
eq. (23)), and the corresponding values of Bg and A are obtained from equa-

tions (26). On the basis of the present analysis, this point is not clearly
shown to be a point of instability because, for larger values ¢f A, the cor-
responding roots w of the frequency parameter Bp remain real. Additionally,
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in reference 4 it is reasoned that the modes at this intersection which are
associated with the coefficients Cj; and C;p, will not couple aerodynamically

at precisely zero flow angle. However, the solution at this point is degenerate

and a linear instability of the form 1;eo"t is entirely possible. In any event,
the system is shown to verge on instability; however, the appropriate variable

is not A but the flow angle A itself, as will be shown presently. At a flow
angle of 2° (fig. 3%(b)) the frequency loops have separated and an actual coupling
of the Cj1 and Cjo modes is apparent. Furthermore, there are four intersec-
tions of the real and imaginary parts of the determinant, and, thus, four bound-
ary points between stability and instability. The lowest critical value of A
occurs at the point labeled (c¢) and the system is unstable until A 1is increased
to a_value corresponding to point (a). Now, however, there are again four roots
of BR, all real, and all modes of oscillation are stable. Thus we have the odd
result of a stable region between the values of A at points (a) and (b), above
and below which the panel is unstable. For increases in A above the point ()
there will always be at least one mode of instability.

The flutter boundary for all flow angles between 0° and 90° (for zero stress)
is shown in figure 4. In the regions below the boundary in figure L all four

4 —
y
(b) a-b T._ L
3| N, N, O —— 4
Stable Dey/Dy 0015 y T
la) D, /D, 0.0002 -
y # i . b
¢ Ao E .
\ L S __E 1.
A lc) X
— 2 -
A
Unstable
| | | | | _
0 15 30 45 50 75 0

A, degrees

Figure 4.- Stability boundaries of orthotropic panel for arbitrary flow directiocn.
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roots of the frequency parameter Eﬁ are real and, thus, the panel is stable;
in the region designated as unstable, at least two roots of Eﬁ are complex con-

jugates and an unstable mode of oscillation exists. The boundaries labeled (a),
(v), and (c) in figure 4 correspond to the points a), (b), and (c), respectively,
in figure 3(b). The stable region between boundaries (a) and (b) is shown to
shrink rapidly with an increase in flow angle and disappears at approximately

A = 7°. At small angles A the boundaries (a) and (c) approach each other as
the flow angle is decreased and they become coincident at exactly 0°. Hence, the
frequency crossing (fig. 3(a)) given by the double-valued root of equation (23)
has at least neutral stability (for gg = O) at a flow angle of 09; however, the
penel becomes unstable for any increase in flow angle, no matter how small. This
bounded region of stability accounts for the apparent abrupt change in mode and
the discontinuity in flutter boundaries shown in references 3 and 4 for isotropic
panels of length-width ratios less than 1.0.

The practical significance of the stable region between boundaries (a) and
(b) is somewhat difficult to assess. Such bounded regions of stability may exist
for many orthotropic panels wherein the streamwise stiffness Dy 1s considerably

greater than the cross-flow stiffness Dy. The size of the region appears to be

dependent on the proximity of the frequency of the lowest antisymmetric mode (ClE)
to the first natural frequency (Cll). Although the bounded stable region shown

in figure 4 is small, the existence of such a region could result in scatter of
experimental data of investigatlons where the flow angle is not considered. On
the other hand, such a stable region appears to be of little consequence to the
designer as this region dissipates rapldly with flow angle (at least for the
orthotropic panel considered), and the lower curve (c) becomes the critical sta-
bility boundary.

The flutter boundary labeled (c) in figure 4 shows a pronounced effect of
flow angle. For the stiffness ratios considered, the critical value of the
dynamic-pressure parameter at A = 90° is only 6.8 percent of the value of
boundary (c) at zero degrees. Thus, there appears to be a marked advantage of
orienting the maximum panel flexural stiffness in the direction of the stream.
However, the flow angle may be expected to vary in flight, with variations up to
300 not unreasonable for lifting reentry-type vehicles. Inasmuch as such an
orientation away from an initial orientation of 0° would reduce Aqp DYy 86 per-

cent, the practical value of initial orientation of maximum stiffness in the
stream direction is open to question.

The variation of A.p with flow angle for changes in the stiffness ratio
ny Dy 1is shown in figure 5. The curves were obtained for an unstressed panel

D
with 6’9'- = 0.15, 0.30, and 0.50 and with ;y— = 0.0002. Only the most critical
X X

boundaries corresponding to curve (c¢) from figure 4 are shown; the lower curve is
reproduced from figure 4. As can be seen from figure 5, increases in stiffness
ratio ny/Dx with constant Dy/Dx indicate a general increase in Aoy oOver

the entire range of flow angles.
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The variation of A, with flow angle for changes in the stiffness ratio

Dy/DX is shown in figure 6. The solid curves are reprcduced from figure 5 and

D
correspond to the stiffness ratios of ﬁfl = 0.15 and 0.50. The dashed curves
X

represent the effects of an increase in the value of the stiffness ratio Dy/bx
from 0.0002 to 0.02. As can be seen from figure 6, only small increases in Aqp

are realized for the rather substantial increase in Dy/Dx. For example, for the
D D
curves corresponding to 55X = 0.15 at A = 900, a stiffness ratio of =% = 0.02

x b'e
resulted in an increase in A only 1.3 times the value for %? = 0.0002. Thus,
X

for the range of stiffness ratios considered, the flexural stiffness Dy 1s seen
to have little effect on the flutter boundary.

Effects of Inplane Locads at Various Flow Angles

Recent experimental investigations (see refs. 10 to 14) and theoretical
studies (refs. 4 and 15) on isotropic panels have revealed that panel suscepti-
bility to flutter increases with application of compressive inplane loads and
that generally the most susceptible condition occurs for the panel on the verge
of buckling or at the transition from a flat-panel flutter boundary to a buckled-
panel flutter boundary. Thus, calculations have been made to determine the
effects of %niform inplane loads at arbitrary flow angles for the panel stiffness
ratios of -~ = 0.0002 and gfl = 0.15. Before varicus loading conditions are

X X
considered, however, it would be useful to examine the geometrical relationship
of the basic flutter parameters con-
- tained in equation (20).

Vibration and buckling rela-
tions.- Solutions of equation (20)
S result in smooth surfaces which will
s0utz be called "characteristic” surfaces.
Such surfaces are shown in figure 7
on a plot of the flutter parameters:
dynamic pressure A, frequency Bg,

Ny
and stress Ky The charac-

Nx,cr

teristic surfaces shown pertain to
the panel oriented at zero flow angle
and Ny = 0. A similar surface

representing a two-mode solution is
discussed in the appendix; however,
some additional comments about the
four-mode results are warranted here.
The intersection of the surfaces in
the zero A-plane shows variations of

Figure T.- Characteristic surfaces and asso-
ciated flutter boundaries.
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the panel in vacuo frequencies with stress. Planes of constant stress show the
effects of airflow on the frequencies. Note that for zero stress, the character-
istic surfaces trace the frequency variation as shown in figure 3{(a). As pointed
out in the discussion of figure 3, the roots of equation (22) locate the flutter
points. Thus, for given stress conditions the solutions obtained result in the
lines along the ridge of the characteristic surfaces and at the intersection of
the two surfaces. DNote from figure 7 that the character of the double-valued
root observed at zero degrees is preserved for the stressed panel. For exactly
zero flow angle, the flutter boundary corresponding to Aer 1is on the ridge (in

planes of constant stress) of the lowest loop (see fig. 3(a)) and is shown in
figure 7 as the solid line, whereas the intersection (dashed line) represents
conditions on the verge of instability with variation of A.

The intercept of 'the characteristic surfaces with the zero frequency plane
is shown by the loops in figure 7 for By = O (for the panel condiiions repre-
sented by fig. T, ER = -0.0002 when w = 0). These loops indicate the effectis
of air forces on the static buckling loads. The flat-panel flutter boundary is
valid to its intersection with a postbuckled flutter boundary; this intersection
always lies above the intersection of the flat-panel flutter boundary and ore of
the buckling loops. (See ref. 15 and the appendix.) Thus, the latter intersec-
tion, which will govern the termination of the flat-panel flutter boundaries to
be presented in later sections, may give a conscrvative estimate of the flutter
speeds. Solution for the termination points is very simple and is illustrated
in the appendix for a two-mode analysis. For the four-mode analysis presented
herein, the termination points are obtained directly from equations (21) and (22)
for arbitrary flow angle, when the freguency ratio m/wr is set equal to zerc

in the expression for By (egs. (18)); equation (22) is solved for Ky -
HX, cr

which is substituted into equation (21) for Asp. Similarly, at the extreme

flow angles (A = 0° and 90°) the reduced equations (egs. (24) to (27)) permit
rapld evaluation of the termination points.

The peaks of the buckling loops represent the conditions wherein loss of
stable, static, buckled equilibrium occurs and, hence, is termed the "transtabil-
ity" flutter speed. (See ref. 16 and the appendix.) As can be seen from fig-
ure T, the termination points are somewhat removed from the peak of the loop.

The appearance of the characteristic surfaces for flow angles other than
zero degrees may be visualized with the aid of figure 8, in which the buckling
loops are shown for A = 0°, 2°, and 90°, and with reference to the frequency
loops shown in figure 3. The loops in figure 8 were obtained from equation (20)
for Ny = 0 and Kx = 1.3. The intercepts of the critical flutter boundary with

the loops, indicated by the circles, were obtained from equation (22) and/or the
corresponding reduced equations for A = 0° and 90°. The dashed curves are por-
tions of the corresponding critical flutter boundaries projected on the dynamic-
pressure—stress plane.

Figure 8(a) corresponds to the buckling loops shown in figure 7 and indi-
cates the difference in the transtability value and the termination point. In
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Figure 8.- Influence of airflow on buckling loads
for flow angles of 0°, 2°, and 90°. Ny = 0;
D D
Kx = 1.3; =L = 0.0002; =¥ = 0.15. (Dashed
Dx Dx
lines represent portion of flutter boundary. )

ure 3(b) with application of inplane load.

figure 8(b), for A = 29, the charac-
teristic surfaces have separated as was
the case shown in figure 3(b), and the
flutter boundary now corresponds to that
initially represented by the frequency
crossing. As noted previously, the
separation of the frequency loops low-
ered the critical value of the dynamic-
pressure parameter for flutter of the
unstressed panel (see, for example,

fig. 4); however, as can be seen in fig-
ures 8(a) and 8(b), at the termination
point the frequency separation results
initially in an increase in the value

of the dynamic-pressure parameter. In
figure 8(c), for A = 90°, the buckling
loops and, thus, the characteristic sur-
faces, have degenerated into two inde-
pendent surfaces.

Stability regions of a flat panel
with inplane load.- Before the effects
of inplane loads on flutter boundaries
for a panel at arbitrary flow angles
are considered, it would be interesting
to investigate the effects of inplane
loads on the bounded stability region
shown in figure 4. The stability
regions resulting from application of
an inplane load Ny for flow angles

of 0° and 2° are shown in figure 9.

The calculations were made for stiff-
Dxy
ness ratios of —— = 0.15 and

X

EX = 0.0002 and for Kx = 1.3. The
Dx

s0lid curves correspond to solutions
for a flow angle of 0°, whereas the
dashed curves and the upper solid curve
represent solutions for a flow angle of
20, The upper solid curve labeled (b)
represents the flutter boundary at pre-
cisely zero degrees; the lower solid
curve represents the frequency crossing
shown in figure 7. The curves labeled
(a), (b), and (c) show the variation of
the respective flutter points from fig-
The termination points (denoted by

the circles) correspond to the points shown in figure 8(b) for A = 2°.
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Figure Q.- Stability boundaries of flat panel with inplane compression for flow angles of 0° and 2°.
Circles represent termination points.

As can be seen from figure 9, for A = 2° the small stable region exists
over the entire flat-panel boundary. As the flow angle approaches 0°, the dashed
curves (a) and (c) approach the lower solid curve and the unstable region dis-
appears. As the flow angle is increased above 2°, the boundary (a) approaches
the boundary (b) and, thus, the stable region disappears. Boundaries (a) and (b)
were noted previously to coincide (for Nx = 0) at a flow angle of TO°.

The results shown in figure 9 could be of particular significance in experi-
mental panel flutter investigations since the unstable region bounded by curves
(a) and (c) could exist for only a slight deviation of flow angle from the true
zero position. Thus, wind-tunnel investigations of a stressed panel could con-
ceivably result in two distinct flat-panel flutter boundaries or, if not clearly
delineated, could show up as apparent scatter in the data.
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Effects of inplane load Ny ut various flow angles.- Numerical solutions

to equation (22) obtained for various values of

(to the termination point)
X,cr

and for flow angles of A = 0%, 59, 109, 45°, and 90° are shown in figure 10.

The calculations are based on ly =0 (Ky = 0), for which Ky = 1.3 1is obtained

from rigure 2. For Ny = O, the values of the dynamic-pressure parameter at the
different flow angles are those shown by the curve in figure 4, The boundary cor-
responding to A = 09 is reproduced from figure 9 for comparison with boundaries
at other flow angles. The dashed line, representing the frequency crossing, is
also shown since this boundary signifies the beginning of the unstable region as
A is increased. At A = 09 Appr decreases linearly with increasing values of
Ny. As the flow angle is increased, however, the flutter boundary 1s seen to be
less dependent on the inplane load. At A = 90° the flutter boundary is inde-
pendent of loading, inasmuch as the direction of inplane loading is at right

y
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: - o
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Figure 10.- Flutter voundaries as functions of inplane load Nx for various flow angles. Circles
represent termination points.



angles to the direction of flow. A

similar result was obtained in refer- e
ences 7 and 15. It should be noted | \\\\\\\\\\\\\\\ |
that a small stable region exists . A
above the curve for A = 5° (see A — Ll

fig. 4); however, this region is
omitted here for simplicity. aioA

Effects of stress ratio Ny/NX.-

Flutter boundaries have been obtained

N ,
for stress ratios of ﬁz = 0.1% and A;
b
0.3 at flow angles of A = OO, bo,
and 900. For stress ratiocs greater
than 0.3, higher mode buckling results
(see fig. 2); thus, more modes would
have to be used in the analysis. The
flutter boundaries are shown in fig- o i/
ure 11 where the dynamic-pressure %;j e o8
parameter is plotted against the stress j _‘sx\i\ -

N
parameter Kx —2%

Figure 11(a) Jo o o
X, cr 0o :
shows the boundaries for A = 0%, fig- N,
ure 11(b) for A = 59, and figure 11(c) N on
for A = G0°. The stress ratio for

each curve is shown on the figure; the

N Figure 11.- Flutter boundaries as functions of
boundaries for i = 0 are reproduced stress ratio Ny/Nx for flow angles of 0,

Nx 20 and 90°. Circles represent termination
from figure 10. In figure 11(a) a points.

single boundary is obtained for all
values of Ny/NX, but the value of A., at the termination point is different for

each stress ratio. Thus, as was noted previously, the loading normal to airstream
Ny does not change the position of the flutter boundary but simply determines the
location of the termination point. The value of Aepr at the termination point

for a stress ratio of zero is only 30 percent of the value for no stress and
represents a large increase in panel thickness for prevention of flutter. The
addition of Ny raises the termination point and, thus at A = 0°, appears to be

beneficial. (It should be noted that an increase in Ny/NX is not necessarily

beneficial; see, for example, ref. 17.) However, the opposite is true for any
other flow angle, as is shown by figures 11(b) and 11(c). Increases in the stress
ratio result in decreases in the value of Ay for flutter until, at a stress
ratio of 0.3, the value of A, at the point of buckling goes to zero. The fact
that Aopr becomes zero is a result of the change in critical flutter modes (see

fig. 3) associated with the separation of the characteristic surfaces. See, for
example, the buckling chart shown in figure 2; at a stress ratio of 0.3 the panel
has an equal choice of buckling modes (Cll and Clg), and, because these modes

coalesce for flutter (for flow angles other than zero degrees), any increase in



A results in flutter. The condition of zero A, or infinite thickness, would
probably be circumvented if nonlinear effects were considered. The phenomenon

of infinite thickness for prevention of flutter is discussed in detail in refer-
ence 17. As noted previously, the change in critical flutter mode occurs instan-
taneously with a change in flow angle from the zero position; thus, the condition
of infinite thickness exists over practically the entire range of flow angles.

Several conditions of midplane compression have been considered, but no men-
tion has been made of effects of midplane tension. In general, tension is con-
sidered beneficial in the alleviation of panel flutter. However, this may not
always be true if panel buckling is possible. Consider, for example, the case
in which Ny 1is negative (tension) and Ny 1s in compression with the panel

oriented at zero flow angle. Note from the insert on the buckling chart (fig. 2)

N
that for a stress ratio of ﬁl = -0.77 the panel again has an equal choice of
X

buckling modes (Cll and 021). Note also from figure 3(a) that these two modes

are critical for flutter at precisely A = 0°; therefore, it can be concluded
that again Aqr becomes zero for flutter. Calculations show that the flutter

boundary for negative Ny 1is actually an extension of the boundary in fig-
ure 11(a) where Aoy continues to decrease linearly for negative increases of
the stress ratio Ny/Nx.

CONCLUDING REMARKS

A theoretical analysis for flutter of flat rectangular simply supported
orthotropic panels is presented. The lateral loading is obtained from modified
piston theory aerodynamics. Numerical results (obtained for zero aerodynamic
damping) are presented for arbitrary panel orientation with the airstream and
for various conditions of biaxial compressive stress. The panel is oriented such
that a flow angle of zero degrees corresponds to the direction of maximum panel
flexural stiffness alined with the stream. All calculations are based on a panel
length-width ratio of 1.0.

The results for an unstressed panel show that for prescribed stiffness
ratios, representative of corrugation-stiffened panels, the panel oriented with
the maximum flexural stiffness in the direction of the stream provides greatest
resistance to flutter. However, flutter characteristics of orthotropic panels
are found to be highly sensitive to variations in flow angularity from this
orientation. Thus, the practical value of orientation of maximum stiffness in
the direction of the stream is open to question. In the range of stiffness
ratios considered, changes in the stiffness ratio ny/Dx were found to be

effective in changing the flutter boundary; however, a large range of the stiff-
ness ratio Dy/DX was found to be rather ineffective on the flutter results.

Any deviation of the panel from the position of precisely zero flow angle
was found to cause a change in the critical flutter mode. For small values of
the flow angle, this mode change resulted in a region of stable oscillations
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bounded completely by an unstable region; thus, the odd result that an increase
in the airspeed may render an unstable panel stable. The bounded stable region
was preserved with the inclusion of compressive inplane loads and resulted in
two distinct flat-panel boundaries (in a small range of the flow angle from the
zero position). Such characteristics could cause considerable discrepancy in
experimental data if not taken into account. In addition, as a consequence of
the change in critical flutter mode, for certain stress ratios, panels which
require a finite thickness at buckling when oriented at zero flow angle require
infinite thickness for all other flow angles. Thus, it is apparent that certain
stress ratios must be avoided in design.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., June 6, 1963.
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APPENDIX

A METHOD FOR DETERMINING THE INTERSECTION COF DYNAMIC

AND STATIC STABILITY BOUNDARLES

Experimental and theoretical investigations (see refs. 10 and 15) have shown
that the most critical condition for flutter of a panel subjected to compressive
inplane loads occurs at transition from the unbuckled to postbuckled flutter
boundaries. A method for estimating the critical flutter speed at transition (in
absence of a large-deflection analysis) is based on the transtability analysis
introduced in reference 16; this analysis considers only the static buckling
behavior of a panel (or beam) in the presence of supersonic flow. This approach
has been shown to give a good approximation to the flutter speed for infinitely
wide buckled panels (see ref. 18) and has been applied to three-dimensional iso-
tropic panels in references 7 and 17.

The results of a recent large-deflection dynamic analysis of finite isotropic
panels, presented in reference 15, indicate that the critical flutter speed at
termination of the flat-panel flutter boundary may, in different cases, lie above
or below the transtability speed and, thus, the transtability speed may be noncon-
servative. In no case, however, did the large-deflection flutter boundaries lie
below that critical speed defined by the intersection of the flat-panel dynamic
boundaries with the static stability boundaries. Hence, the critical speed at
this intersection is used in this paper to terminate the flat-panel flutter bound-
aries. The method for obtaining the intersection of the dynamic boundary with the
static stability boundary is presented in this appendix and the wmathematical
expressions are shown to be as simple as those for the transtability speed. The
approach differs from the transtability concept in that the panel frequencies are
retained in the equations and, thus, it permits a traceable relationship between
the vibration, flutter, and buckling characteristics in the presence of supersonic
airflow.

For purposes of simplicity, only a two-mode analysis will be made; that 1is,
jJ=2 and 1 =1 (see eq. (5)). Further, simple harmonic motion is assumed,
such that o = iw, and damping is negligible (ga =~ Q). Then for a zero flow angle
(A = 0%) the flutter determinant can be written, in the present notation, as
shown:

- A
b -
1 Bﬂu
=0 (A1)
& b,
Bn)“L

where
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Note that the frequency parameter Bp contains the eigenvalue <£1> . The solu-
T

tion to equation (Al) in terms of the frequency parameter ﬁﬁ, after some

o

rearranging, is

- 2
5. .17 -5443 |5 .52 _ (LA
Bp = L2985 3 (K - o) ( ) (83)
Solutions to equation (A3) result in a
characteristic surface like that shown
in figure 12 on a plot of the three 5
basic flutter parameters: dynamic pres- 3 4

2

sure A, frequency ratio (ﬁi) , and
stress A. Figure 12 is intended for . (j{
illustrative purposes only; hence, the - T
numerical values of A and A are
unimportant. However, the two-mode
representation as shown is limited to
panel configurations and stress condi-
tions for which buckling occurs in the
first mode. Additionally, it should be
noted that_the stress is not necessarily
zero for A = 0. oh

The intercept of the surface with
the zero A-plane shows the variation
of panel frequencies with stress. The
values of A at which the freguencies
become zero correspond to the two static
buckling loads for the assumed modes.
Planes of constant stress show the vari-
ation of panel frequencies with airflow.
Coalescence of the frequencies consti- - Lo Characteristic surface relati
tutes dynamic instability (fOI‘ ZE€TO g&;\?ra;i.;ns, buckling, and flutter. TrZ%e

damping) and, hence, flutter (ref. 7) 3 in zero freguency plane shows variation
2 of buckling load with airflow.

. . w
since the eigenvalues (——) become
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complex for values of A above the peak of the frequency loop. Thus, the flat-
panel dynamic boundary is represented by the solid ridge line of the character-
istic surface. The intercept of the characteristic surface with the zero fre-
quency plane, represented by the trace in the NA-plane, shows the variation of
the panel buckling loads with airflow. This trace represents the static stability
boundary and results when the frequency 1is set equal to zero in equation (AL);
thus, the role of the eigenvalue 1is transferred to A. Above the peak of the
static boundary the loads disappear and, hence, from transtability considerations
no stable, static buckled configuration exists. Thus, the peak of the static
boundary (through which the plane labeled (b) in fig. (12) passes) constitutes
the transtability speed Ap. The intersection of the dynamic boundary with the

static boundary (denoted Acr, and through which plane (c) passes) represents

the value of A for which the flutter frequency becomes zero, or, on the basis
of small-deflection theory, Aer corresponds to buckling in the flutter mode.

As seen from figure 12, Agr 1is less than Agp.

The procedure for obtaining Aqpr 1is straightforward. Inasmuch as dynamic

instability results when the frequencies coalesce or become equal, it is seen fron
equation (A}) that for flutter the radical term must always be zero. Hence,

7\ 9 —
= = |A - All_
” 16' 5| (AL)
and thus equation (A3) becomes

By - L2 (45)

Equations (A4) and (A5) are completely general and, thus, locate the flutter
boundary for specified values of A; equation (Ah) is identical to that obtained
in reference 7. Then the values of A and Aqpr at the intersection of the

dynamic flutter boundary with the static stability boundary 1s obtained by setting

2 —
the frequency ratio (é%) equal to zero in the expression for Bg (eqs. (A2))

and by substituting the result into equations (A4) and (A5).

It is of interest to note the relationship between Ap and Acyp; the differ-

ence in these values is dependent on the boundary conditions on inplane loads.
Conslder, for instance, the case in which the panel is loaded by Ny only

(Ny = O). From equation (A2), ﬁh is a constant (for (é%) = O>, and, hence,

substituting A from equation (A5) into equation (Al) yields

A —
;ﬁf = ﬁ%lBR + hl (a6)
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and the corresponding value of AT, as shown in reference 7, is
A -9—|§R + LLI (AT)
& 32

Thus, KT is 25 percent greater than A.,. On the other hand, if the loading is
reversed (Nx = O), the flutter boundary is independent of the loading and, hence,

Ap = Aer and is given by equation (A4).
The equations developed to obtain Aqy (egs. (A4) and (A5)) are readily con-

verted to the form used in the text. Eguation (A5) is seen to be the sum of the
diagonal terms of equations (A2); that is,

Further, upon substitution of Eﬁ from equation (A5) into the equation for Bl
from equations (A2), equation (AL) can be written as

2&5 = 2[E, | (19)

Equations (A8) and (A9) are seen to be identical to equations (24) of the text.
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